
1/10

In-depth ESP32 PWM Tutorial | How to use PWM in
ESP32?

electronicshub.org/esp32-pwm-tutorial

In this tutorial, we will learn how to use PWM in ESP32 SoC. Using PWM in ESP32, you

can control the brightness of LED, set the position of a Servo Motor and adjust the speed

of a DC Motor. This ESP32 PWM Tutorial contains all the important information for

configuring PWM in ESP32.

A Brief Note on ESP32 PWM

The ESP32 SoC is fully loaded with very useful peripherals and PWM is one of them. Yes.

There is a dedicated hardware block for PWM in the silicon of ESP32. Pulse Width

Modulation or PWM in short is an established and widely used techniques for power

delivery.

You can use ESP32’s PWM to drive LEDs, motors (normal DC Motors as well as Brushless

Motors) and smart lights. The PWM Controller in ESP32 consists of two main sub-

modules: LED Control or LEDC Peripheral and Motor Control Pulse Width Modulator or

MCPWM Peripheral.

Even though we will be limiting our demonstration of PWM in ESP32 to fading an LED, it

is good to know about the Motor Control PWM (MCPWM) block in ESP32, with input

capture modules.

If you ever worked with Brushless DC (BLDC) Motors, you will realize the importance of

sensing the position of the rotor (using Hall Effect Sensors) for precise speed control.

https://www.electronicshub.org/esp32-pwm-tutorial/
https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-PWM-Image.jpg


2/10

ESP32 LED PWM Controller (LEDC)

The LEDC Peripheral of ESP32 consists of 16 PWM Channels capable of generating

independent waveforms, mainly for RGB LED Control, but can also be used for other

purposes as well.

There are a couple of interesting points about LED PWM Controller in ESP32 that you

should be aware of.

16 independent PWM Channels, divided into group of two with 8 channels per

group.

Programmable resolution between 1-bit and 16-bits.

Frequency of the PWM wave depends on the resolution of PWM.

Automatically increases / decreases duty cycle without processor intervention.

Configure PWM Channels of ESP32

Do you remember ‘analogWrite()’ function in Arduino programming? It is the function

responsible for generating PWM in Arduino UNO (and other ‘Arduino’ boards).

Since, pretty much every thing in LED PWM of ESP32 is user configurable (channel,

resolution and frequency), instead of using ‘analogWrite()’ function, we will be using a

different (and dedicated) set of functions to configure PWM in ESP32.

Here is a list of all the LEDC APIs exposed by the driver. These functions are written for

Arduino IDE port of ESP32.

ledcSetup(channel, frequency, resolution_bits);

ledcAttachPin(pin, channel);

ledcWrite(channel, dutycycle);

ledcRead(channel);

ledcWriteTone(channel, frequency);

ledcWriteNote(channel, note, octave);

ledcReadFreq(channel);

ledcDetachPin(pin);

Of the 8 functions, we will be focusing on the first three, as they are more useful (and the

minimum required) for generating PWM.

Some important points to remember while configuring PWM Channel in ESP32:

As there are 16 PWM channels, the ‘channel’ argument takes any value between 0

and 15.

Next is the frequency of the PWM signal. You can set the frequency as per your

requirements like 1 KHz, 5 KHz, 8 KHz, and 10 KHz.

The resolution of the PWM is also configurable and ESP32 PWM can be

programmed anywhere between 1 bit to 16 bit resolution.

https://www.electronicshub.org/arduino-pwm/


3/10

PWM frequency and resolution are inversely proportional and is dependent on the

clock source. So, be careful when selecting the values for frequency and resolution.

Finally, assign a GPIO pin for PWM Output. You can assign any GPIO Pin but be

careful when assigning (do not use already used GPIO pins like UART, SPI, etc.).

The following table shows a few commonly used PWM frequencies and resolutions.

Clock Source for LEDC LEDC PWM Frequency PWM Resolution

80 MHz APB_CLK 1 KHz 16 bit

80 MHz APB_CLK 5 KHz 14 bit

80 MHz APB_CLK 10 KHz 13 bit

8 MHz RTC8M_CLK 1 KHz 13 bit

8 MHz RTC8M_CLK 8 KHz 10 bit

1 MHz REF_TICK 1 KHz 10 bit

LED Fading using PWM in ESP32

With all the necessary information on PWM in ESP32 being laid out, we can now proceed

to implementing our first project of fading an LED using ESP32 PWM. It is a very simple

project where the brightness of an LED connected to a GPIO Pin of ESP32 will gradually

increase and decrease repeatedly.

This project is more about understanding the LEDC functions: ledcSetup, ledcAttachPin

and ledcWrite and how to generate PWM in ESP32 than the fading LED itself.

Components Required

ESP32 DevKit Development Board

3 x 5mm LED

220Ω Resistor

3 x 5KΩ Potentiometers

Breadboard

Connecting Wires

Micro-USB Cable

Circuit Diagram

https://www.electronicshub.org/basics-uart-communication/


4/10

The following image shows the connection for fading an LED using ESP32 PWM

Controller.

Code

You can use any GPIO Pin to output the PWM Signal. So, I am using GPIO 16, which is

also the UART2 RX Pin. Next, we have to setup the LEDC Channel using ‘ledcSetup’

function. The first argument is the channel. Any value between 0 and 15 can be given as

channel.

Next argument is the frequency. You can provide any frequency but as a convenience, I

will set the frequency as 5 KHz. Also, you have to set the resolution of the PWM. This

value must be a number between 1 and 16. I went with 10-bit resolution.

For the rest of the settings, refer to the following code, where I commented the important

lines.

const int LEDPin = 16; /* GPIO16 */

int dutyCycle;

https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-PWM-LED-Fading-Circuit.jpg


5/10

/* Setting PWM Properties */

const int PWMFreq = 5000; /* 5 KHz */

const int PWMChannel = 0;

const int PWMResolution = 10;

const int MAX_DUTY_CYCLE = (int)(pow(2, PWMResolution) - 1);

void setup()

{

ledcSetup(PWMChannel, PWMFreq, PWMResolution);

/* Attach the LED PWM Channel to the GPIO Pin */

ledcAttachPin(LEDPin, PWMChannel);

}

void loop()

{

/* Increasing the LED brightness with PWM */

for(dutyCycle = 0; dutyCycle <= MAX_DUTY_CYCLE; dutyCycle++)

{

ledcWrite(PWMChannel, dutyCycle);

delay(3);

//delayMicroseconds(100);

}

/* Decreasing the LED brightness with PWM */

for(dutyCycle = MAX_DUTY_CYCLE; dutyCycle >= 0; dutyCycle--)

{

ledcWrite(PWMChannel, dutyCycle);

delay(3);

//delayMicroseconds(100);

}

}



6/10

view raw ESP32-PWM-LED_Fading.ino hosted with ❤ by GitHub

NOTE: You can attach multiple GPIO pins to the same LEDC PWM Channel. If you do

so, all the GPIO pins will share the properties of the channel (resolution and frequency).

ESP32 PWM with ADC

One of the important features of PWM in ESP32 is all the 16 channels can be configured

independently i.e., each channel can have its own resolution and frequency. To

demonstrate this, let us make use of the ADC peripheral and adjust the dutycycle of three

different LEDC PWM channels independently by turning a potentiometer.

Three 5KΩ Potentiometers are connected to three ADC Input pins of ESP32. Based on the

output of the ADC, we will set the dutycycle of three PWM Channels, which are configured

with different parameters.

For easy understanding, I connected three LEDs: RED, GREEN and BLUE to three GPIO

Pins. These three GPIO Pins are attached to three different LEDC PWM Channels and

each channel is initialized with its own frequency and resolution.

LED GPIO Pin PWM Channel PWM Frequency PWM Resolution

RED GPIO 16 0 5000 (5 KHz) 12

GREEN GPIO 17 2 8000 (8 KHz) 13

BLUE GPIO 4 4 10000 (10 KHz) 14

https://gist.github.com/elktros/8388795bd8bf442edf4d88d0e81054fd/raw/0270bb7958772f0a0017620c2508e9ccc96bebec/ESP32-PWM-LED_Fading.ino
https://gist.github.com/elktros/8388795bd8bf442edf4d88d0e81054fd#file-esp32-pwm-led_fading-ino
https://github.com/
https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-PWM-LED-Fading-1.jpg


7/10

Another important point to remember is the resolution of ADC of ESP32 is 12-bit. So, we

have to map this to the PWM resolution carefully, to get the full range of control.

Circuit Diagram

The following image shows the connections for adjusting the dutycycle of PWM Channels

using ADC (potentiometers).

Code

const int redLEDPin = 16; /* GPIO16 */

const int greenLEDPin = 17; /* GPIO17 */

const int blueLEDPin = 4; /* GPIO4 */

uint16_t redDutyCycle;

uint16_t greenDutyCycle;

uint16_t blueDutyCycle;

const int redPWMFreq = 5000; /* 5 KHz */

const int redPWMChannel = 0;

const int redPWMResolution = 12;

https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-PWM-ADC-Circuit.jpg


8/10

const int RED_MAX_DUTY_CYCLE = (int)(pow(2, redPWMResolution) - 1);

const int greenPWMFreq = 8000; /* 8 KHz */

const int greenPWMChannel = 2;

const int greenPWMResolution = 13;

const int GREEN_MAX_DUTY_CYCLE = (int)(pow(2, greenPWMResolution) - 1);

const int bluePWMFreq = 10000; /* 10 KHz */

const int bluePWMChannel = 4;

const int bluePWMResolution = 14;

const int BLUE_MAX_DUTY_CYCLE = (int)(pow(2, bluePWMResolution) - 1);

const int ADC_RESOLUTION = 4095; /* 12-bit */

void setup()

{

/* Initialize Serial Port */

Serial.begin(115200);

/* Initialize PWM Channels with Frequency and Resolution */

ledcSetup(redPWMChannel, redPWMFreq, redPWMResolution);

ledcSetup(greenPWMChannel, greenPWMFreq, greenPWMResolution);

ledcSetup(bluePWMChannel, bluePWMFreq, bluePWMResolution);

/* Attach the LED PWM Channel to the GPIO Pin */

ledcAttachPin(redLEDPin, redPWMChannel);

ledcAttachPin(greenLEDPin, greenPWMChannel);

ledcAttachPin(blueLEDPin, bluePWMChannel);

}

void loop()

{



9/10

/* Read Analog Input from three ADC Inputs */

redDutyCycle = analogRead(A0);

greenDutyCycle = analogRead(A3);

blueDutyCycle = analogRead(A4);

/* Map ADC Output to maximum possible dutycycle */

//redDutyCycle = map(redDutyCycle, 0, ADC_RESOLUTION, 0,
RED_MAX_DUTY_CYCLE);

greenDutyCycle = map(greenDutyCycle, 0, ADC_RESOLUTION, 0,
GREEN_MAX_DUTY_CYCLE);

blueDutyCycle = map(blueDutyCycle, 0, ADC_RESOLUTION, 0,
BLUE_MAX_DUTY_CYCLE);

/* Set PWM Output of Channel with desired dutycycle */

ledcWrite(redPWMChannel, redDutyCycle);

ledcWrite(greenPWMChannel, greenDutyCycle);

ledcWrite(bluePWMChannel, blueDutyCycle);

Serial.println("RED -- GREEN -- BLUE");

Serial.print(redDutyCycle);

Serial.print(" -- ");

Serial.print(greenDutyCycle);

Serial.print(" -- ");

Serial.print(blueDutyCycle);

Serial.print("\n");

delay(1000);

}

view raw ESP32-PWM-ADC.ino hosted with ❤ by GitHub

https://gist.github.com/elktros/2e7173fb9fc77d8118abe85b45a471eb/raw/618071f6c448a90523d676aea0c7f5bc8dbbe60c/ESP32-PWM-ADC.ino
https://gist.github.com/elktros/2e7173fb9fc77d8118abe85b45a471eb#file-esp32-pwm-adc-ino
https://github.com/


10/10

Conclusion

A complete tutorial on ESP32 PWM peripheral. You learned how to use PWM in ESP32 to

fade an LED, how to configure the PWM Channel, set the frequency and resolution. You

also learned how PWM Channels in ESP32 can be configured independently.

2 Responses

Leave a Reply

Your email address will not be published. Required fields are marked *

 

 

https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-PWM-ADC.jpg

